Advanced Processing of the Optical Surface on Large Lightweight Mirrors

T. Mah, H. D. Lee, T. A. Parthasarathy, S. Dixit,
R. Bhattacharya, and L. E. Matson*
18 September, 2003
UES, Inc., 4401 Dayton-Xenia Rd., Dayton, OH 45432
*AFRL/MLLN, Wright-Patterson AFB, OH 45433-7817

Work being funded by

AFRL-ML

MDA SBIR Phase I #F29601-03-M-0268 (5 Sept., '03)

<u>OUTLINE</u>

- * Objectives
- * Technical Approach (Replication Technique)
 - SiC/Si₃N₄ Nano-Laminate
 - **Negative CTE Powder/CDD Processed Composite**
- * Critical Issues
- * Preliminary Experimental Results
 - **Nano-Laminate Deposition**
 - Geopolymerization
 - **Negative CTE Nano-Powder Synthesis**
 - **Chemically Driven Densification (CDD)**
- * Summary and Future Work for Next Few Months

OBJECTIVES

- * Deposition Processing Optimization:
 - SiC/Si₃N₄ Alternating Nano-Laminate
 - Release Layer Coating/Concept
- * Production of -CTE Nano-Powder in large Quantity
- * -CTE Powder/Geopolymer Composite Fabrication and Bond Strength measurement of SiC/SiC
- * -CTE Nano-Powder/CDD Composite Fabrication

Schematic Drawing of SiC/Si₃N₄ Nano-Laminate Mirror Assembly Concept

Schematic Drawing of - CTE Nano-Powder Reinforced CDD Processed Uni-Body Composite Mirror Assembly Concept

CRITICAL ISSUES

* Release Layer Coating/Concept:

Easy Release from Master Mandrel without Distortion

* SiC/Si₃N₄ Alternating Nano-Laminate :

Microstructural Uniformity within the Layer

Mechanical Strength of the Laminate vs. # of Layers

* -CTE Powder/Geopolymer Composite Bond:

Adequate Bond Strength for SiC/SiC Joint

* -CTE Powder/CDD Composite Fabrication

Large Negative CTE Nano-Powder production

Exothermic Reaction Control (-CTE powder, Mandrel, etc.)

Schematic Drawing of SiC/Si₃N₄ Nano-Laminate Mirror Assembly Concept

EXPERIMENTAL RESULTS

Single Component Magnetron Sputtering Deposition

SiC: Deposition Optimization (7 trials) by Varying Argon Flow Rate and Chamber

Pressure and Deposition Time and Distance from Target to Si Substrate

 Si_3N_4 : Deposition Parameter Optimization Started

Fugitive Release Layer

KBr: Thermal Evaporation Deposition

SiO₂: Thermally Grown on Si

SiC/Si₃N₄ Alternating Multi-Layer Deposition

7 Alternating Layers on with and without SiO, Release layer

XRD and Cross-sectional SEM/TEM micrographs

XRD on Single components revealed Amorphous

XRD Patterns of SiC and Si₃N₄ Coatings on Si Wafer Showing Amorphous nature of the Coatings

Cross-Sectional TEM Micrograph of Multi-Layer Coating (The Compositions of the Coating Layers are Tentative)

Potential negative CTE oxides

(CTE Range =
$$-5 \sim -9 \times 10^{-6}$$
/K)

Cubic:

- ZrW₂O₈
- ZrMo₂O₈
- ZrW₂Mo_{2-x}O₈

Orthorhombic:

 $-Y_2W_3O_{12}$

Origin of Negative CTE

SEM Photomicrographs of ZrW₂O₈ Powder (UES) (a) After Dehydration, and (b) After Calcination

Geopolymerization

Schematic Drawing of - CTE Nano-Powder Reinforced CDD Processed Uni-Body Composite Mirror Assembly Concept

Chemically Driven Densification (CDD) process

Reaction:

- 1) $CrO_{3(s)} \rightarrow 0.5 \ Cr_2O_{3(s)} + 0.75 \ O_2 \ @ \sim 650^{\circ}C$ in air CrO_3 : m.p. = 197°C; decomposition T. = 250°C
- 2) Cr-bearing gas (e.g., CrO_{3(g)})→Condensation & Nucleation (Cr₂O_{3(s)}) →Densification

Examples/Experiences:

Densification of Porous Alumina matrix in CMC

Current Process:

Multiple-Infiltration and Pyrolysis of CrO₃/H₂O Solution into Commercial (Wah Chang) Negative CTE Powder (ZrW₂O₈) Preform

Future Work: Use ZrW₂O₈ Nano-Powder (UES)

Powder diffraction patterns of (a) ZrW_2O_8 , (b) ZrW_2O_8 - Cr_2O_3 (3 cycles), and (c) ZrW_2O_8 - Cr_2O_3 (5 cycles)

SEM Photomicrographs of ZrW_2O_8 – Cr_2O_3 Composite showing insufficient densification due to the presence of large ZrW_2O_8 particles (Wah Chang). High Magnification shows full densification near fine ZrW_2O_8 particles. Average grain size of CDD processed Cr_2O_3 matrix is about 25 nm. (Grey phase = ZrW_2O_8 , Dark phase = Cr_2O_3)

SUMMARY

- * Preliminary Experimental Work on All the Key Processing Issues were Successfully Explored:
 - Nano-Laminate Deposition
 - Release Layer Deposition
 - Negative CTE Nano-Powder Synthesis
 - Suitable Geopolymer Synthesis
 - CDD processing with Negative CTE powder
- * Base on the Preliminary Work, the Proposed Concepts are Appeared to be Viable

FUTURE WORK

- * Nano-Laminate Deposition Process Optimization
- * Best Release Layer Selection and Experimentation
- * Negative CTE Nano-Powder Production in Large Quantity
- * Bond Strength Measurement between SiC and SiC using Negative Nano Negative CTE powder Reinforced Geopolymer
- * CDD Processing using Nano-sized Negative CTE Powder Preform and Characterization
- * Microstructural Characterization and Physical Property (e.g., CTE) Measurement of Nano-Laminate
- * Based on the Optimization Study, Down Select or Modify the Proposed Concept will be Proposed to Study in for Phase II